LinuxGuruz
  • Last 5 Forum Topics
    Replies
    Views
    Last post


The Web Only This Site
  • BOOKMARK

  • ADD TO FAVORITES

  • REFERENCES


  • MARC

    Mailing list ARChives
    - Search by -
     Subjects
     Authors
     Bodies





    FOLDOC

    Computing Dictionary




  • Text Link Ads






  • LINUX man pages
  • Linux Man Page Viewer


    The following form allows you to view linux man pages.

    Command:

    pem

    
           PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey,
           PEM_write_bio_PKCS8PrivateKey_nid, PEM_write_PKCS8PrivateKey_nid,
           PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY,
           PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey,
           PEM_write_bio_RSAPrivateKey, PEM_write_RSAPrivateKey,
           PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey,
           PEM_write_bio_RSAPublicKey, PEM_write_RSAPublicKey,
           PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY, PEM_write_bio_RSA_PUBKEY,
           PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
           PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey,
           PEM_write_DSAPrivateKey, PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY,
           PEM_write_bio_DSA_PUBKEY, PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams,
           PEM_read_DSAparams, PEM_write_bio_DSAparams, PEM_write_DSAparams,
           PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams,
           PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509,
           PEM_write_bio_X509, PEM_write_X509, PEM_read_bio_X509_AUX,
           PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX,
           PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ,
           PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW,
           PEM_read_bio_X509_CRL, PEM_read_X509_CRL, PEM_write_bio_X509_CRL,
           PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
           PEM_write_bio_PKCS7, PEM_write_PKCS7,
           PEM_read_bio_NETSCAPE_CERT_SEQUENCE, PEM_read_NETSCAPE_CERT_SEQUENCE,
           PEM_write_bio_NETSCAPE_CERT_SEQUENCE, PEM_write_NETSCAPE_CERT_SEQUENCE
           - PEM routines
    
    
    

    SYNOPSIS

            #include <openssl/pem.h>
    
            EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
                                                   pem_password_cb *cb, void *u);
    
            EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                                   char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
                                                   char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
            int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
    
            RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
    
            int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
    
            RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
    
            int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
    
            DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
                                                   pem_password_cb *cb, void *u);
    
            DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
                                                   unsigned char *kstr, int klen,
                                                   pem_password_cb *cb, void *u);
    
            DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_DSAparams(FILE *fp, DSA *x);
    
            DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
    
            DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
    
            int PEM_write_bio_DHparams(BIO *bp, DH *x);
    
            int PEM_write_DHparams(FILE *fp, DH *x);
    
            X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
    
            X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
    
            int PEM_write_bio_X509(BIO *bp, X509 *x);
    
            int PEM_write_X509(FILE *fp, X509 *x);
    
            X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
    
            X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
    
            int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
    
            int PEM_write_X509_AUX(FILE *fp, X509 *x);
    
            X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
                                                   pem_password_cb *cb, void *u);
    
            X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
                                                   pem_password_cb *cb, void *u);
    
            int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
    
            int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
    
            int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
    
            int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
    
            X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
                                                   pem_password_cb *cb, void *u);
            X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
                                                   pem_password_cb *cb, void *u);
            int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
            int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
    
            PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
    
            PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
    
            int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
    
    
    

    DESCRIPTION

           The PEM functions read or write structures in PEM format. In this sense
           PEM format is simply base64 encoded data surrounded by header lines.
    
           For more details about the meaning of arguments see the PEM FUNCTION
           ARGUMENTS section.
    
           Each operation has four functions associated with it. For clarity the
           term "foobar functions" will be used to collectively refer to the
           PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar() and
           PEM_write_foobar() functions.
    
           The PrivateKey functions read or write a private key in PEM format
           using an EVP_PKEY structure. The write routines use "traditional"
           private key format and can handle both RSA and DSA private keys. The
           read functions can additionally transparently handle PKCS#8 format
           encrypted and unencrypted keys too.
    
           PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a
           private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
           format using PKCS#5 v2.0 password based encryption algorithms. The
           cipher argument specifies the encryption algoritm to use: unlike all
           other PEM routines the encryption is applied at the PKCS#8 level and
           not in the PEM headers. If cipher is NULL then no encryption is used
           and a PKCS#8 PrivateKeyInfo structure is used instead.
    
           PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
           also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo
           however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead.
           The algorithm to use is specified in the nid parameter and should be
           the NID of the corresponding OBJECT IDENTIFIER (see NOTES section).
    
           The PUBKEY functions process a public key using an EVP_PKEY structure.
           The public key is encoded as a SubjectPublicKeyInfo structure.
    
           The RSAPrivateKey functions process an RSA private key using an RSA
           structure. It handles the same formats as the PrivateKey functions but
           an error occurs if the private key is not RSA.
    
           The RSAPublicKey functions process an RSA public key using an RSA
           structure. The public key is encoded using a PKCS#1 RSAPublicKey
           structure.
    
           The RSA_PUBKEY functions also process an RSA public key using an RSA
           structure. However the public key is encoded using a
           SubjectPublicKeyInfo structure and an error occurs if the public key is
           not RSA.
    
           The DSAPrivateKey functions process a DSA private key using a DSA
           structure. It handles the same formats as the PrivateKey functions but
           an error occurs if the private key is not DSA.
    
           The X509_AUX functions process a trusted X509 certificate using an X509
           structure.
    
           The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate
           request using an X509_REQ structure. The X509_REQ write functions use
           CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions
           use NEW CERTIFICATE REQUEST (as required by some CAs). The X509_REQ
           read functions will handle either form so there are no X509_REQ_NEW
           read functions.
    
           The X509_CRL functions process an X509 CRL using an X509_CRL structure.
    
           The PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7
           structure.
    
           The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate
           Sequence using a NETSCAPE_CERT_SEQUENCE structure.
    
    
    

    PEM FUNCTION ARGUMENTS

           The PEM functions have many common arguments.
    
           The bp BIO parameter (if present) specifies the BIO to read from or
           write to.
    
           The fp FILE parameter (if present) specifies the FILE pointer to read
           from or write to.
    
           The PEM read functions all take an argument TYPE **x and return a TYPE
           * pointer. Where TYPE is whatever structure the function uses. If x is
           NULL then the parameter is ignored. If x is not NULL but *x is NULL
           then the structure returned will be written to *x. If neither x nor *x
           is NULL then an attempt is made to reuse the structure at *x (but see
           BUGS and EXAMPLES sections).  Irrespective of the value of x a pointer
           to the structure is always returned (or NULL if an error occurred).
    
           The PEM functions which write private keys take an enc parameter which
           specifies the encryption algorithm to use, encryption is done at the
           PEM level. If this parameter is set to NULL then the private key is
           written in unencrypted form.
    
           The cb argument is the callback to use when querying for the pass
           phrase used for encrypted PEM structures (normally only private keys).
    
           For the PEM write routines if the kstr parameter is not NULL then klen
           bytes at kstr are used as the passphrase and cb is ignored.
    
           If the cb parameters is set to NULL and the u parameter is not NULL
           then the u parameter is interpreted as a null terminated string to use
           as the passphrase. If both cb and u are NULL then the default callback
           routine is used which will typically prompt for the passphrase on the
           current terminal with echoing turned off.
           in a GUI application). The callback must return the number of
           characters in the passphrase or 0 if an error occurred.
    
    
    

    EXAMPLES

           Although the PEM routines take several arguments in almost all
           applications most of them are set to 0 or NULL.
    
           Read a certificate in PEM format from a BIO:
    
            X509 *x;
            x = PEM_read_bio_X509(bp, NULL, 0, NULL);
            if (x == NULL)
                   {
                   /* Error */
                   }
    
           Alternative method:
    
            X509 *x = NULL;
            if (!PEM_read_bio_X509(bp, &x, 0, NULL))
                   {
                   /* Error */
                   }
    
           Write a certificate to a BIO:
    
            if (!PEM_write_bio_X509(bp, x))
                   {
                   /* Error */
                   }
    
           Write an unencrypted private key to a FILE pointer:
    
            if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
                   {
                   /* Error */
                   }
    
           Write a private key (using traditional format) to a BIO using triple
           DES encryption, the pass phrase is prompted for:
    
            if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
                   {
                   /* Error */
                   }
    
           Write a private key (using PKCS#8 format) to a BIO using triple DES
           encryption, using the pass phrase "hello":
    
            if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
                   {
                   /* Error */
                   {
                   /* Error */
                   }
    
           Skeleton pass phrase callback:
    
            int pass_cb(char *buf, int size, int rwflag, void *u);
                   {
                   int len;
                   char *tmp;
                   /* We'd probably do something else if 'rwflag' is 1 */
                   printf("Enter pass phrase for \"%s\"\n", u);
    
                   /* get pass phrase, length 'len' into 'tmp' */
                   tmp = "hello";
                   len = strlen(tmp);
    
                   if (len <= 0) return 0;
                   /* if too long, truncate */
                   if (len > size) len = size;
                   memcpy(buf, tmp, len);
                   return len;
                   }
    
    
    

    NOTES

           The old PrivateKey write routines are retained for compatibility.  New
           applications should write private keys using the
           PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines
           because they are more secure (they use an iteration count of 2048
           whereas the traditional routines use a count of 1) unless compatibility
           with older versions of OpenSSL is important.
    
           The PrivateKey read routines can be used in all applications because
           they handle all formats transparently.
    
           A frequent cause of problems is attempting to use the PEM routines like
           this:
    
            X509 *x;
            PEM_read_bio_X509(bp, &x, 0, NULL);
    
           this is a bug because an attempt will be made to reuse the data at x
           which is an uninitialised pointer.
    
    
    

    PEM ENCRYPTION FORMAT

           This old PrivateKey routines use a non standard technique for
           encryption.
    
           The private key (or other data) takes the following form:
    
            -----BEGIN RSA PRIVATE KEY-----
            Proc-Type: 4,ENCRYPTED
    
           IV returned by EVP_bytestokey().
    
    
    

    BUGS

           The PEM read routines in some versions of OpenSSL will not correctly
           reuse an existing structure. Therefore the following:
    
            PEM_read_bio_X509(bp, &x, 0, NULL);
    
           where x already contains a valid certificate, may not work, whereas:
    
            X509_free(x);
            x = PEM_read_bio_X509(bp, NULL, 0, NULL);
    
           is guaranteed to work.
    
    
    

    RETURN CODES

           The read routines return either a pointer to the structure read or NULL
           if an error occurred.
    
           The write routines return 1 for success or 0 for failure.
    
    
    

    1.0.1e 2013-02-11 pem(3)

    
    
  • MORE RESOURCE


  • Linux

    The Distributions





    Linux

    The Software





    Linux

    The News



  • MARKETING






  • Toll Free

webmaster@linuxguruz.com
Copyright © 1999 - 2016 by LinuxGuruz